Transcriptome profiling of the developing male germ line identifies the miR-29 family as a global regulator during meiosis.
نویسندگان
چکیده
MicroRNAs are essential for spermatogenesis. However, the stage-specific requirements for particular miRNAs in the male mammalian germ line remain largely uncharacterized. The miR-34 family is, to date, the only miRNA proven to be necessary for the production of sperm in mammals, though its germline roles are poorly understood. Here, we generate and analyze paired small RNA and mRNA profiles across different stages of germline development in male mice, focusing on time points shortly before and during meiotic prophase I. We show that in addition to miR-34, miR-29 also mediates widespread repression of mRNA targets during meiotic prophase I in the male mouse germline. Furthermore, we demonstrate that predicted miR-29 target mRNAs in meiotic cells are largely distinct from those of miR-34, indicating that miR-29 performs a regulatory function independent of miR-34. Prior to this work, no germline role has been attributed to miR-29. To begin to understand roles for miR-29 in the germ line, we identify targets of miR-29 undergoing post transcriptional downregulation during meiotic prophase I, which likely correspond to the direct targets of miR-29. Interestingly, candidate direct targets of miR-29 are enriched in transcripts encoding extracellular matrix components. Our results implicate the miR-29 family as an important regulatory factor during male meiosis.
منابع مشابه
I-51: The Role of the Transcription FactorGCNF in Germ Cell Differentiation and Reproductionin Mice
The germ cell nuclear factor (GCNF) is a member of the nuclear receptor super family of transcription factors. GCNF expression during gastrulation and neurulation is critical for normal embryogenesis in mice. GCNF represses expression of the POU domain transcription factor Oct4 during mouse post-implantation development in vivo. Oct4 is thus down-regulated during female gonadal development, whe...
متن کاملGlobal human tissue profiling and protein network analysis reveals distinct levels of transcriptional germline-specificity and identifies target genes for male infertility.
BACKGROUND Mammalian spermatogenesis is a process that involves a complex expression program in both somatic and germ cells present in the male gonad. A number of studies have attempted to define the transcriptome of male meiosis and gametogenesis in rodents and primates. Few human transcripts, however, have been associated with testicular somatic cells and germ cells at different post-natal de...
متن کاملExpression profiling of mammalian male meiosis and gametogenesis identifies novel candidate genes for roles in the regulation of fertility.
We report a comprehensive large-scale expression profiling analysis of mammalian male germ cells undergoing mitotic growth, meiosis, and gametogenesis by using high-density oligonucleotide microarrays and highly enriched cell populations. Among 11,955 rat loci investigated, 1268 were identified as differentially transcribed in germ cells at subsequent developmental stages compared with total te...
متن کاملE2F1 controls germ cell apoptosis during the first wave of spermatogenesis
Cell cycle control during spermatogenesis is a highly complex process owing to the control of the mitotic expansion of the spermatogonial cell population and following meiosis, induction of DNA breaks during meiosis and the high levels of physiological germ-cell apoptosis. We set out to study how E2F1, a key controller of cell cycle, apoptosis, and DNA damage responses, functions in the develop...
متن کاملDev112888 1..13
Absence of mitosis and meiosis are distinguishing properties of male germ cells during late fetal and early neonatal periods. Repressors of male germ cell meiosis have been identified, but mitotic repressors are largely unknown, and no protein repressing both meiosis and mitosis is known. We demonstrate here that the zinc-finger protein BNC2 is present in male but not in female germ cells. In t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- RNA biology
دوره 14 2 شماره
صفحات -
تاریخ انتشار 2017